
18 The Delphi Magazine Issue 46

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Occupy Your Mind
We take a look at parsing, reverse Polish
notation, and cheating at homework

A couple of months ago I came
home from work to find my

wife and her 10-year-old brother
sitting on the floor surrounded by
pieces of paper with writing on. It
transpired that he had some maths
homework to do: using all of the
digits 2, 3, 5 and 7, and the normal
arithmetic operators, in any com-
bination, write down expressions
that evaluate to all of the numbers
from 1 to 100. For example, 2+3+
5+7=17; that’s one of the numbers
ticked off, only 99 left to go.

The homework was obviously an
exercise in aiding mental arithme-
tic, and after some messing around
with pen and paper helping out and
finding some answers, I got to
thinking of how I might write a pro-
gram to do it. Unfortunately for
Jeremy I didn’t finish it that eve-
ning (I had other things to do) and
so he had to rely on brain power,
which was better for him anyway.

Reputation
The answer I came up with recalled
a none too impressive part of my
degree years. When I was a lad,
doing my mathematics degree at
King’s College, London, we had the
opportunity of taking a couple of
programming courses as part of
the degree. Not on your modern
PCs, I hasten to add: in those days
the computer department at KCL
had a timeshare to a large main-
frame for the whole of the Univer-
sity of London. You wrote your
programs in FORTRAN on punched
cards (there were six punch
machines in the computer depart-
ment), submitted them and, if you
were lucky, got them back three
hours later with the printout from
hell. Analyze the results, fight to
get back on the punch machines,
resubmit, get the results back
hours later, etc, etc. All in all, a
pretty vile introduction to pro-
gramming. Heaven knows why I
was bitten enough with the

programming bug to continue and
make a career out of it.

Anyway, I managed to get
through the introductory program-
ming course (I wrote a program to
generate 4x4 magic squares), and
the next term I started the
advanced course. I can’t remember
now the requisites of the course,
but the end of course project had
to be fairly complex. I decided to
write a program to differentiate
algebraic expressions. Complete
lunacy. Armed with Knuth’s The
Art of Computer Programming,
Volume 1, and some FORTRAN pro-
gramming book that told me about
parsing expressions, I made a val-
iant attempt and failed. I just could
not get the program to read and
process text properly. A real mess:
I was spending 15 hours a week just
on this project, the rest of my work
was suffering, and so I decided to
abandon the course. (With hind-
sight, I think the problem was that
the particular flavour of FORTRAN I
was using read text two characters
at a time into a computer word, and
I was processing the whole word as
a single character.)

So this time around in Algorithms
Alfresco, we’re going to look at
expression parsing, reverse Polish
notation, expression evaluation
(including Jeremy’s homework)
and, finally, put my course project
to rest and discuss differentiation.

Little By Little
So the first problem is to under-
stand an expression like
(3+5*2)-4*2; in other words to rec-
ognize the individual operands and
operators (this is called parsing the
expression). The second problem
is then to evaluate it.

Usually the way to parse an
expression is to write a recursive-
descent parser, but just for fun we’ll
take an alternative route using a
stack. What we shall do is to create
an RPN version of the expression

(RPN stands for Reverse Polish
Notation after the Polish logician,
Jan Lukasiewicz). The reason for
this is threefold. Firstly, the RPN
version of an expression does not
use parentheses. Secondly, we
don’t have to worry about prece-
dence of operators (this follows on
from the lack of parentheses).
Thirdly, evaluating an RPN expres-
sion is simplicity itself. So, what
does an RPN expression look like?
Those of you who have used the
old-style Hewlett-Packard calcula-
tors are intimately familiar with
RPN and could convert our exam-
ple expression into RPN at the
drop of a hat. For the others,
(3+5*2)-4*2 is 352*+42*- in RPN.
The reason for the ‘reverse’ part of
the name RPN is that the operator
always appears after the operands
it uses.

Evaluating an RPN expression
requires the use of a stack (those
old Hewlett-Packard calculator
users are now starting to squirm a
little as it all comes back). The
stack holds operands and results
of previous calculations. Let’s
evaluate our example RPN expres-
sion (352*+42*-) so you can see
how easy it is. We read the expres-
sion from the left to the right. Take
the 3 and push it on the stack. Take
the 5 and do likewise. Similarly for
the 2. Now we have a * operator.
This requires two operands, so
pop two off the stack, the 2 and the
5, apply the multiply operator to
give 10 and push the result onto
the stack again. Next we have the +
operator. Again two operands are
required, we pop off the 10 and the
3 this time. Add them (13) and
push the result onto the stack.

20 The Delphi Magazine Issue 46

What’s next? We have a 4 (push it)
and a 2 (push it). Now there’s a *
operator, so we pop off two
operands from the stack (the 4 and
the 2), multiply them (8) and push
the answer onto the stack. Next in
line is the final - operator. If you’d
been paying attention, you’d know
there are two items on the stack,
first to pop being an 8 and the next
a 10. Subtract them to give 2 and
push the result onto the stack.
We’ve run out of expression string
at this point, and the result is the
only thing left on the stack: 2. I’m
sure you’ll agree that writing an
evaluator for an RPN expression is
pretty simple, both to understand,
and, as we’ll see in a moment, to
code.

But. (And it’s a big but.) The first
problem remains: to parse a
normal algebraic expression and
create an RPN version of it. Our
example expression is relatively
complex: it has parentheses and
requires knowledge of operator
precedence. Note that throughout
this article we shall use Pascal’s
precedence rules: parentheses are
the most important, followed by
unary minus, or negative, followed
by multiply and divide, followed by
add and subtract. Exponentiation,
which Pascal does not support,
will be slipped in between unary
minus and multiply/divide. A unary
operator has one operand, a binary
operator has two.

In Private
So let’s start reading the expres-
sion and decide what to do about
each of the components (or
tokens) in the expression. For this
first exposure to parsing, we’ll
assume that each token is one
character. The first character is a
left parenthesis. Um, don’t know
what to do with that just yet, so
we’ll push it onto a stack and get it
out of the way (I warn you, this arti-
cle is going to be Stack City).
What’s next? The digit 3. Not quite
sure what to do with that one
either. Since the RPN expression
we are trying to build has just
operators and operands, we’ll use
two stacks during our parsing: one
for operators and one for
operands. So push the 3 onto the

operand stack. Right, onwards; the
next token is a + sign. We don’t
know yet what to add to what, so
just push it onto the operator
stack. So far, it’s been most boring.

And next? We read the 5
operand. We could pop off the top
operator and the top operand, and
combine them with the 5 to make
35+. But we won’t do that just yet,
we’ll defer the clever stuff for a
moment. What’s next? The *
operator.

This is where it gets interesting.
The rule I shall quote (and apply) is
going to be this: if the operator at
the top of the operator stack is of
lower or equal precedence, then
push the current operator token
onto the operator stack. On the
other hand, if the operator at the
top of the stack is of greater prece-
dence, then pop it and two
operands, combine them into an
RPN expression and push the
result onto the operand stack.

Now we’ll decide what to do with
the operator token we have in
hand, obeying the rule I just
quoted. In our case, the * operator
has greater precedence than the +
operator on the top of the stack so
we just push it.

Now it’s the right parenthesis.
Time for another rule. If we get a
right parenthesis we start popping
operators and operands off the
stacks and combining them into
RPN expressions and pushing the
results onto the operand stack
(mimicking the algorithm to
evaluate an RPN expression in
fact), until we pop off the left paren-
thesis. If we never pop off a left
parenthesis, the original expres-
sion was badly formed and we can
signal an error.

At this point in our example, the
operator stack looks like this, in a
sideways representation with
spaces separating the elements:

(+ *
^

with the top of the stack marked
with a caret. The operand stack
looks like this:

3 5 2
^

Pop off the * operator. It’s a binary
operator and requires two
operands, so pop off two of them
(the 2 and the 5), combine them in
the RPN format (52*) and push the
answer onto the operand stack.
Now, pop off the + operator, pop
off the two top operands (52* and
3) and combine them into the RPN
form (352*+) and push onto the
operand stack. Pop off the top
operator, which is the left paren-
thesis, and we’re done with that
particular operation.

Onwards. The next token from
the expression is a - operator. Push
it onto the operator stack. The
next token is a 4. Push it onto the
operand stack. The next is a * oper-
ator: we look at the top of the oper-
ator stack, it’s a -, which is of lesser
precedence, and so we push the *.
Next is a 2, which is pushed onto
the operand stack. Next is nothing
at all: we’ve parsed the entire
expression. What happens next is
that we ‘pretend’ that the end of
the expression is like having a right
parenthesis and pop off and com-
bine operators and operands until
there is only one operand left (we
hope). The operator stack looks
like this:

- *
^

and the operand stack like this:

352*+ 4 2
^

Pop off the * operator and two
operands, combine to give 42* and
push onto the operand stack. Pop
off the - operator and two
operands, combine to give
352*+42*- and push onto the
operand stack. And that’s it, the
operator stack is empty, with only
one element on the operand stack,
which is the RPN expression we
wanted. Phew!

Although going through this
example, step by laborious step,
might seem long-winded, it is actu-
ally very simple. It uses no
recursion, unlike its better known
stable-mate, the recursive descent
parser [and we all know how much
Julian hates recursion! Ed].

June 1999 The Delphi Magazine 21

It can detect errors in the origi-
nal expression string quite easily. I
mentioned one error, a right paren-
thesis without a corresponding left
parenthesis, but others are found
just as easily. If there is only one
operand left for a binary operator
such as multiply then we have an
error. If we are left with a left paren-
thesis on the operator stack, then
we have an error. And so on.

One thing I haven’t talked about
is the unary operators like plus and
minus. How do we recognize
those? Unfortunately, detecting
them causes the parsing algorithm
to lose some of its elegance, and is
probably why the recursive
descent parser is better known and
used. The problem with a unary
minus (negative) compared with a
binary minus (subtraction) is that
they are the same character! We
have to separate the two uses by
the context in which they’re found.

A unary operator is found imme-
diately after another, binary, oper-
ator or a left parenthesis, and
immediately before an operand or

a left parenthesis. That’s all, if you
think about it. If you get a minus
sign after an operand or a right
parenthesis, it will signify the
binary version, not the unary one.
In our algorithm we shall have to
track these states so that we can
detect the context. What the code
I’ve written does is to track three
states: the next token must be an
operand, the next token could be
an operand, and the next token
cannot be an operand. Using these
states we can also detect errors as
well (for example, once we’ve read
an operand token, we can set the
state to Next token cannot be an
operand and thereby detect two
operands in a row. So, maybe all is
not lost.

Stay Awhile
It would seem that I can now show
some code and discuss it; and
ordinarily I would. However, I was
reading a thread with messages
from Chuck Jazdzewski, the lead
developer and architect for Delphi,
on a private newsgroup, and he

mentioned a data structure called
an ObStack for stacking or storing
‘objects’ of varying sizes like
strings without incurring the
overhead of separate allocations
for the individual items (the
message thread was about heap
management for threads, but
that’s for another time).

I was writing this article at the
time and was already a little put
out at the thought of all the string
allocations the parser required for
the operand stack. Chuck’s men-
tion of ObStack got me searching
the internet, and I found it in the
source code for the GNU C/C++
compiler. Rather than describe the
ObStack structure itself, I wrote a
variant for Delphi that stacks
Pascal length-byte strings: the
TaaStringStack.

If you or I were to write a string
stack, we’d probably do it in the
same way: a linked list of pointers
to strings on the heap. Something
along the lines described in the
Algorithms Alfresco column for
February 1999, perhaps. Pushing a

22 The Delphi Magazine Issue 46

string would mean allocating a new
node, allocating space on the heap
for the string inside the node and
then adding the node to the head of
the stack. In the prior column I
showed you how to allocate blocks
of nodes from the heap, in order to
save time and space. But what
about the strings? How can we
allocate ‘blocks’ of them? I would
discount allocating a whole batch
of 255 character strings and doling
them out; the vast majority of RPN
expressions we shall be creating
would be much smaller than that.

This is where the ObStack comes
in; at least, the variant I’ll describe.
The short string stack is an
abstract data structure with four
main methods: pushing a string,
popping a string, finding if the
stack is empty, calculating the
number of items in the stack. The
class we’ll describe interfaces
these standard methods, but
implements them in a clever way.

What we shall do is this: allocate
a large chunk of memory on the
heap, say 4096 bytes. When we
push a string onto the stack, inter-
nally we find the end of the last
string pushed, and then copy the
string being pushed immediately
afterwards. Eventually we shall run

out of space in this chunk, the
string we’re trying to copy is too
large for the remaining space, and
we shall allocate another chunk of
memory and continue the same
process. The chunks of memory
will be chained together in a
singly-linked list in the order we
allocate them.

All very well, but what happens
when we pop the strings? Under
the scheme I’ve just described
we’d be in a pretty pickle: we have
no way of knowing how long previ-
ous strings are and hence how to
go back through the stack. Even
worse: what happens if the previ-
ous string is in another chunk? The
obvious answer is that we need
more structure to the chunks. The
class I designed stores string
nodes in the chunks. Each node
consists of a pointer to the previ-
ous node, followed by a variable
number of bytes storing the string.

The code is shown in Listing 1.
When we push a string, the class
works out the address of the next
node in the chunk. For efficiency
purposes, we make sure the node
starts on a 4-byte boundary. The
class then calculates the amount
of space required (being 4 bytes
for the pointer, a byte for the string
length and then the actual charac-
ters in the string) and checks that
enough room is left to store the
string. If not, a new chunk is
allocated, linked to the previous
chunk, and the start of the chunk is
the position for the new node. The
pointer for the new node is set to
the address of the previous string
node, and the string is copied after
the pointer (notice that the string
itself starts on a 4-byte boundary).
This new string is now at the top of
the stack. For convenience, we
return the address of the string we
just pushed on the stack.

type
PChunkHeader = ^TChunkHeader;
TChunkHeader = packed record
chLimit : PChar;
chPrev : PChunkHeader;

end;
PStringNode = ^TStringNode;
TStringNode = packed record
snPrev : PStringNode;
snString : TaaString255;

end;
function TaaStringStack.Pop : TaaString255;
var Temp : PChar;
begin
{check for the obvious mistake}
if (FCurString = nil) then
raise Exception.Create(
'TaaStringStack.Pop: the stack is empty');

{return the current string}
Result := PStringNode(FCurString)^.snString;
{move current string pointer back, checking for
switching chunks where we need to free chunk just left}
if (FChunk + sizeof(TChunkHeader) = FCurString) then begin
{we're leaving this chunk; set current string pointer}
FCurString := PChar(PStringNode(FCurString)^.snPrev);
{reset chunk address and dispose of the one just left}
Temp := FChunk;
FChunk := PChar(PChunkHeader(FChunk)^.chPrev);
FreeMem(Temp, FChunkSize);

end else begin
{just move the current string pointer back}
FCurString := PChar(PStringNode(FCurString)^.snPrev);

end;
dec(FCount);

end;
function TaaStringStack.Push(const aSt : TaaString255) :
PaaString255;

var
PrevNode : PStringNode;
NewCurString : PChar;

begin
{save the current string node address}
PrevNode := PStringNode(FCurString);
{check for an empty stack}
if (FCurString = nil) then begin
if (FChunk = nil) then
ssAddNewChunk;

end else begin
{advance the current string pointer}
NewCurString := PChar(PrevNode) +
sizeof(pointer) + length(PrevNode^.snString) +
1 {the length byte};

{align the new pointer}
NewCurString :=
pointer((longint(NewCurString) + 3) and $FFFFFFFC);

{if there's not enough room for the new string, get a
new chunk}
if (PChunkHeader(FChunk)^.chLimit - NewCurString) <
(sizeof(pointer) + length(aSt) + 1) then
ssAddNewChunk

{otherwise, position the current string pointer}
else
FCurString := NewCurString;

end;
{set up the new node}
with PStringNode(FCurString)^ do begin
snPrev := PrevNode;
snString := aSt;

end;
{return address of the pushed string}
Result := PaaString255(FCurString + sizeof(pointer));
inc(FCount);

end;

TaaExpressionParser = class
public
constructor Create(const aExpr : string);
destructor Destroy; override;
property Expression : string
read epGetExpression write epSetExpression;

property RPNExpression : string
read epGetRPNExpression;

property Value : double
read epGetValue;

property Variable[const aName : string] : double
read epGetVariable write epSetVariable;

end;

➤ Listing 2: Expression parser interface.

➤ Listing 1: Pushing and popping
from a string stack.

June 1999 The Delphi Magazine 23

Popping is slightly more compli-
cated than just following the
pointer in the top string node. If we
move back from one chunk into the
previous chunk, we make a note of
this and make sure that the chunk
we’ve just emptied is freed.

Those of you who’ve been fol-
lowing the code can probably see
that it’s pretty nasty looking. To
ease the calculation of addresses
I’ve used PChars all over the place
because Delphi only supports
pointer arithmetic on PChar point-
ers. It can look pretty scary at
times, what with all the typecasts
going on, but the above descrip-
tion and the comments should
help you follow the logic. Those of
you who have been really following
the code will see that I am also
making the strings pushed on
the stack null terminated for
convenience.

What’s It Gonna Be
The full expression parser requires
two other stacks: an operator stack
(which, in fact, can be a simple

character stack) and a stack of
double values. I hesitate to call the
latter a ‘double stack’ since it con-
veys the wrong impression (two
stacks side by side?), so I’ll call it a
float stack instead. We might as
well write these two stacks as sepa-
rate classes that we can reuse later
if we so wish. I won’t show the code
here; it’s all pretty simple and the
units are on this month’s disk.

After all that, I think it’s time I
showed some expression parsing
code. Listing 2 shows the interface
of an expression parser. The
RPNExpressionproperty returns the
RPN version of an ordinary
algebraic expression as a specially
formatted string. The reason for
the ‘special’ formatting is that the
parser can parse expressions like
25+42 to give the very ambiguous
2542+ if we weren’t very careful.
The formatting used is that all
atomic operands (like numbers) in
the RPN expression are prefixed by
a space, so that they can be easily
separated when it’s time to evalu-
ate the expression. 25+42 would

then come out as ‘ 25 42+’. Listing 3
reveals the higher-level code that
generates the RPN expression. A
couple of notes might be in order:
epFormRPNSubExpr generates an
RPN expression from the operator
in hand and the operand stack,
epCheckBadParserState just checks
the parser state is valid (and raises
an exception, if not) and epGet
Precedence is a simple lookup rou-
tine that returns the precedence
level of the operator passed to it.

Son Of A Preacher Man
The expression parser class I’m
providing has an extra bit of
functionality: it allows the use of
variables in the expression string.
If we wish to evaluate an expres-
sion containing variables, we shall
need to provide a way of informing
the parser object the values for the
various variables. That’s simple
enough (a method with two
parameters, one a variable name

procedure TaaExpressionParser.epParseToRPN;
var
ParserState : TaaExprParserState;
TokenType : TaaExprTokenType;
Op : char;
StartPos : PChar;
PrecOp : integer;
PrecTop : integer;

begin
{if we've done this already, get out}
if FParsed then Exit;
{initialize the operator stack to have a left parenthesis;
when we reach the end of the expression we'll be
pretending it has a right parenthesis}
FOpStack.Clear;
FOpStack.Push('(');
{initialise the operand stack}
FStStack.Clear;
{initialise the parser}
FExpr := FOrigExpr;
ParserState := psCouldBeOperand;
{get the next token from the expression}
TokenType := epGetNextToken(StartPos);
{process all the tokens}
while (TokenType <> ttEndOfExpr) do begin
{what type of token are we trying to parse?}
case TokenType of
ttOperator :
begin
{it's an operator}
Op := StartPos^;
{if the operator is a left parenthesis, just push
it onto the operator stack}
if (Op = '(') then begin
FOpStack.Push(Op);
ParserState := psCouldBeOperand;

end else begin
epCheckBadParserState(ParserState,
psMustBeOperand, StartPos);

{if the operator is a right parenthesis, start
popping off operators and operands and forming
RPN subexpressions, until we reach a left
parenthesis}

if (Op = ')') then begin
if FOpStack.IsEmpty then
epRaiseBadExpressionError(StartPos);

epFormRPNSubExpr(')', StartPos);
ParserState := psCannotBeOperand;

end
{if the operator is a unary operator, then
ignore a unary plus (it has no effect) and
push a unary minus}

else if (ParserState = psCouldBeOperand) then
begin
if (Op <> '+') and (Op <> '-') then
epRaiseBadExpressionError(StartPos);

if (Op = '-') then
FOpStack.Push(UnaryMinus);

ParserState := psMustBeOperand;
end else begin
{if we reach this point, the operator must be
pushed onto the stack, however, we first need
to check that we are not pushing it onto an
operator of greater precedence}
PrecOp := epGetPrecedence(Op);
if FOpStack.IsEmpty then
PrecTop := 0

else
PrecTop := epGetPrecedence(
FOpStack.Examine);

if (PrecOp < PrecTop) then
epFormRPNSubExpr(Op, StartPos);

FOpStack.Push(Op);
ParserState := psCouldBeOperand;

end;
end;

end;
ttNumOperand, ttVarOperand :
begin
{it's an operand}
epCheckBadParserState(ParserState,
psCannotBeOperand, StartPos);

epPushNewOperand(StartPos);
ParserState := psCannotBeOperand;

end;
end;
{get the next token from the expression}
TokenType := epGetNextToken(StartPos);

end;
{at the end we pretend that the expression was terminated
with a right parenthesis and we can't be expecting an
operand}
epCheckBadParserState(ParserState, psMustBeOperand,
StartPos);

epFormRPNSubExpr(')', StartPos);
{at this point, the operator stack should be empty and the
operand stack should have one item: the RPN of the
original expression}
if (not FOpStack.IsEmpty) or (FStStack.Count <> 1) then
epRaiseBadExpressionError(StartPos);

FParsed := true;
end;

➤ Listing 3: Creating the RPN
expression.

24 The Delphi Magazine Issue 46

and the other a value!). The more
difficult problem is internal: how to
store this information.

The data structure we use must
consist of a set of variable names
and for each variable name there is
associated a value of double type. It
would be easy to use a TStringList
and allocate a double variable on
the heap for each variable, but
that’s a little inefficient. One alter-
native is to allocate chunks of
double values (say 100 at a time)
and store the address of a double
variable with the string in the
string list. This mimics the method
we used with linked lists in Febru-
ary 1999’s Algorithms Alfresco
where we allocated chunks of
nodes at a time, rather than singly.
However, since the variable names
we shall be using are all very short
(obviously shorter than the
expression in the first place) we’ll
reuse the string stack instead, in a
data structure of our own devising
(maybe an even better alternative
would be to use a hash table...).

By the way, by arguing several
possibilities like this I hope to
show that there is never any single
best way to perform a particular
programming task. Sometimes,
you will use one method and data
structure, at other times another
algorithm will suggest itself. Only
by learning about data structures
and algorithms and understanding
their ramifications are you able
to see the different possibilities; I

hope that Algorithms Alfresco plays
its part in this.

Anyway, enter the variable list
class. We’ll make use of Delphi’s
ability to declare properties that
look like arrays and furthermore to
accept a string as the index. To set
the variable x you’d write:

MyVarList[‘x’] := 1.0;

and to read its value later:

Value := MyVarList[‘x’];

All very bizarre looking, but very,
very handy.

Inside is where the interesting
stuff happens, as usual. We’ll
declare an array type of nodes,
each node will contain a pointer to
a shortstring (the pointer will be
provided by the string stack’s Push
method) and a double value. The
variable list class will allocate one
of these arrays internally. New
variable names will be inserted
into the array in sorted order; this
makes finding a particular variable
name very fast, we can use the
normal binary search routine. So
the write method for the property
we described above will attempt to
find the variable in the array. If it
was found, the value in that
element will be overwritten with
the new value. If it wasn’t found,
then we push the variable name
onto the string stack, which gives
us the address of the string in the
stack’s internal data structure, and
we insert a new element at the
proper place in the array. Reading

the value of a variable proceeds in
the same fashion: find the name in
the array; if found, return the
value; if not, return zero (we could
raise an exception for the latter
case, but I consider it ‘nicer’ to be
less aggressive and return zero,
it’s as if all possible variables exist
and are pre-initialized to zero).

At this point we can start
evaluating an expression: we have
a way of setting values for various
variables, we have a way of parsing
the expression into the more
efficient RPN form, we know (in
theory) how to evaluate an RPN
expression. The evaluator method
is shown in Listing 4.

Nothing Has Been Proved
So, let’s move onto my brother-
in-law’s homework. If you recall,
we had to use all the digits 2, 3, 5,
and 7, and any of the usual arith-
metic operators to make all the
numbers from 1 to 100 (or at least
as many as we could possibly do).
My approach to this problem was
to generate RPN expressions by
using combinations of the four
allowable operands together with
any of the standard operators.
Since the normal arithmetic opera-
tors are all binary in nature (we
shall ignore the possibility of using
the unary minus), it turns out that
the RPN expressions would all
have three operators to go with
the four operands.

The program has to generate all
possible RPN expressions of the
form aabbbbc where a stands
for an operand (one of the four

function TaaExpressionParser.epGetValue : double;
var
DblStack : TaaFloatStack;
i : integer;
Operand1 : double;
Operand2 : double;
Expr : string[255];
OperandSt: string[255];

begin
if not FParsed then
epParseToRPN;

{prepare a stack for doubles}
DblStack := TaaFloatStack.Create;
try
{read through the RPN expression and evaluate it}
Expr := FStStack.Examine;
i := 0;
while (i < length(Expr)) do begin
inc(i);
if (Expr[i] = ' ') then begin
if Expr[i+1] in NumberSet then begin
OperandSt := '';
while Expr[i+1] in NumberSet do begin
OperandSt := OperandSt + Expr[i+1];
inc(i);

end;
DblStack.Push(StrToFloat(OperandSt));

end else begin

OperandSt := '';
while Expr[i+1] in IdentifierSet do begin
OperandSt := OperandSt + Expr[i+1];
inc(i);

end;
DblStack.Push(FVarList.Value[OperandSt]);

end
end else begin
if Expr[i] = UnaryMinus then
DblStack.Push(-DblStack.Pop)

else begin
Operand2 := DblStack.Pop;
Operand1 := DblStack.Pop;
case Expr[i] of
'+' : DblStack.Push(Operand1 + Operand2);
'-' : DblStack.Push(Operand1 - Operand2);
'*' : DblStack.Push(Operand1 * Operand2);
'/' : DblStack.Push(Operand1 / Operand2);
'^' : DblStack.Push(Power(Operand1, Operand2));

end;{case}
end;

end;
end;
Result := DblStack.Pop;

finally
DblStack.Free;

end;
end;

➤ Listing 4: Evaluating an RPN
expression.

26 The Delphi Magazine Issue 46

allowable digits), b stands for
either an operand or an operator,
and c stands for an operator. If you
think about how the RPN expres-
sion is evaluated, you’ll see that
this format restricts the RPN
expression to a valid one: we must
have at least two operands on the
stack before we get to an operator
(the aa) and we must finish up with
an operator (the c), otherwise we’ll
end up with two or more operands
on the stack at the end of the
expression (which is invalid). Once
we generate an RPN expression, we
know how to evaluate it, and we
just keep a running check on the
numbers we’ve managed to
generate so far.

Note that I was talking from the
hip just then. The above descrip-
tion does not always produce a
valid RPN expression. Nearly
always, but not quite. A counter
example is 23++57+, where we shall
run out of operands on the stack
for the second + operator when we
try to evaluate it. However, adding
extra checks to the permutation
code to avoid this problem will
only slow down the program. The

reason is that this code is recursive
and the checks would be evaluated
many, many times. The recursive
routine would also become much
more complex to understand.
Better, I think, to generate the
invalid RPN expressions and then
reject them at evaluation time.

What Have I
Done To Deserve This?
How do we create the possible per-
mutations of the form aabbbbc? If
you haven’t seen permutation
code before, it’s quite easy once
you know how (as is everything!).

What we shall do is to permute
the string ‘2357 ’ (ie ‘2357’ with 3
spaces following) with the assump-
tion that (eventually) spaces will
be converted into operators and
the first two tokens (or characters)
must be operands. We’ll also
assume that the seventh character
must always be a space, so in fact
we only have to do the permuta-
tion on the first six characters.

Right then, here we go: the first
character of the expression. We
must permute through all the pos-
sible digits here. We assume that

➤ Listing 5: Generating RPN expressions through permutations.
the digits are in positions 1
through 4 of the string (we shall
make sure that they are). What
happens is an example of a divide
and conquer technique; in other
words, restating the algorithm as
some simple operation together
with the same or similar algorithm
on a smaller set. We can then keep
on reducing the scope of the algo-
rithm step by step, until it’s really
easy or trivial to code.

That was the layman’s descrip-
tion, now let’s see what the algo-
rithm actually does. Permute
characters 2-6. Swap character 1
with character 2. Permute charac-
ters 2-6. Swap characters 1 and 2
back again. Swap characters 1 and
3. Permute characters 2-6. Swap
characters 1 and 3 back again.
Finally swap characters 1 and 4.
Permute characters 2-6. So, with-
out knowing anything about the
process or what even happens
when we permute characters 2-6
(all we really need to ‘know’ is that
it somehow works), you can see
that we’ve generated all of the
permutations with a digit in
position 1.

And what about the algorithm
that permutes characters 2 to 6?

procedure AddOperators(aProcess : ThwProcessExpression;
var aExpr : ThwExpression);

var
i, i1, i2, i3 : integer;
FirstBlank : integer;
SecondBlank : integer;

begin
{find first and second blanks; third is always at 7}
FirstBlank := 0;
SecondBlank := 0;
for i := 3 to 6 do begin
if (aExpr[i] = ' ') then
if (FirstBlank = 0) then
FirstBlank := i

else begin
SecondBlank := i;
Break;

end;
end;
{replace blanks with every combination of operators}
for i1 := 1 to length(Operators) do begin
aExpr[FirstBlank] := Operators[i1];
for i2 := 1 to length(Operators) do begin
aExpr[SecondBlank] := Operators[i2];
for i3 := 1 to length(Operators) do begin
aExpr[7] := Operators[i3];
{process the completed RPN expression}
aProcess(aExpr);

end;
end;

end;
{reset blanks: permutation/replacement logic requires it}
aExpr[FirstBlank] := ' ';
aExpr[SecondBlank] := ' ';
aExpr[7] := ' ';

end;
procedure PermuteOperands(aProcess : ThwProcessExpression;
var aExpr : ThwExpression; aInx : integer);

var
i, j : integer;
Ch : char;

begin
if (aInx = 6) then begin
AddOperators(aProcess, aExpr);

end else
for i := aInx to 6 do begin
Ch := aExpr[i];
aExpr[i] := aExpr[aInx];
aExpr[aInx] := Ch;
PermuteOperands(aProcess, aExpr, succ(aInx));
aExpr[aInx] := aExpr[i];
aExpr[i] := Ch;

end;
end;
procedure GenerateExpressions(aProcessExpr :
ThwProcessExpression);

var
Expr : ThwExpression;
i1, i2 : integer;
Ch1, Ch2 : char;
Operands : String6;

begin
{preset expression string to operands plus three spaces}
Expr := '2357 ';
Operators := '+-*/';
{generate the first token: an operand}
for i1 := 1 to 4 do begin
{swap characters 1 and i1}
Ch1 := Expr[i1];
Expr[i1] := Expr[1];
Expr[1] := Ch1;
{generate the second token: an operand}
for i2 := 2 to 4 do begin
{swap characters 2 and i2}
Ch2 := Expr[i2];
Expr[i2] := Expr[2];
Expr[2] := Ch2;
{permute tokens 3 thru 6}
PermuteOperands(aProcessExpr, Expr, 3);
{swap characters 2 and i2 back again}
Expr[2] := Expr[i2];
Expr[i2] := Ch2;

end;
{swap characters 1 and i1 back again}
Expr[1] := Expr[i1];
Expr[i1] := Ch1;

end;
end;

June 1999 The Delphi Magazine 27

Well, we do the same thing, but
reduce the problem (note we can’t
touch character 1 at this point).
Permute characters 3 to 6. Swap
characters 2 and 3. Permute char-
acters 3-6. Swap characters 2 and 3
back again; swap characters 2 and
4. Permute characters 3-6. Notice
we’ve reduced the problem again
to a simpler one: that of permuting
characters 3 to 6. Also we’ve
ensured that character 2 is one of
the digits.

Permuting characters 3 to 6
operates on a similar method of
swapping characters, permuting
the remainder, and then swapping
the characters back again. It can be
done by a recursive routine.

Finally we get to the lowest level
of the permutation code when we
try and permute the single charac-
ter at position 6. This is a no-
brainer (there’s only one permuta-
tion!) and we can now easily
replace the spaces in the expres-
sion string with every single com-
bination of operator. See Listing 5.

Once we have properly per-
muted an RPN expression we can

easily evaluate it. Indeed, in this
case, with operands and operators
always one character in size, the
evaluation becomes much easier.
The HOMEWORK.DPR program on
the disk generates a table of
expressions that evaluate to the
numbers 1 to 100.

Goin’ Back
Finally, I’ll quickly outline how to
proceed on my programming
course project, differentiation of
an algebraic expression. First, gen-
erate the RPN version of the
expression. Next, read through the
RPN expression and apply the stan-
dard differentiation rules, but cast
in an RPN format. Obviously, a′ is 0
for any constant a, and x′ is 1. For
an example of a differentiation
rule: the differential of fg+ is equal
to f ′g′+ where f and g are functions
in x. Likewise, (fg*)′ is f ′g*fg′*+,
and so on in a similar vein for the
other operators. The algorithm
boils down to a recursive applica-
tion of these and similar differenti-
ation rules. So, as an example,
differentiating 2x*1+ (ie 2x+1) with

these rules would result in
(remember, read this using single
digits) 0x*21*+0+ which could be
simplified to 2 without too much
problem. One day, when I have
time, I may just finish that project
from so long ago. But not in
FORTRAN. In Delphi.

I hope you enjoyed this foray
into an alternative parsing tech-
nique, and if you have a young rela-
tion who’s been given an
arithmetic homework puzzle you
can at least dazzle him with your
calculation abilities. Printout care-
fully hidden behind your back, of
course.

Julian Bucknall is not Dusty, is not
In Memphis, and knows just what
to do with himself: write an
algorithms book, hopefully at
your bookshop by the new
Millennium. He can be reached at
julianb@ turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.
© Julian M Bucknall, 1999

	Reputation
	Little By Little
	In Private
	Stay Awhile
	What’s It Gonna Be
	Son Of A Preacher Man
	Nothing Has Been Proved
	What Have I Done To Deserve This?
	Goin’ Back

